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percentage of incorrect responses is excluded in an analysis of reac-
tion times [RTs]). We describe three advantages with an experiment 
on cueing of visual attention.

Firstly and most importantly, we use LMMs to estimate not only 
effects and interactions of experimental manipulations (i.e., fixed 
effects parameters), but to estimate simultaneously parameters of 
the variance and covariance components of random effects due to 
subjects. Random effects are subjects’ deviations from the grand 
mean RT and subjects’ deviations from the fixed-effect parameters. 
They are assumed to be independently and normally distributed 
with a mean of 0. It is important to recognize that these random 
effects are not parameters of the LMM – only their variances and 
covariances are. This LMM feature encapsulates the legacy of 
Cronbach (1957, 1975).

Secondly, LMMs have much more statistical power than ANOVAs 
in unbalanced designs. Here we are not referring to lack of balance 
due to missing data, but due to experimental design. Most notable 
in this respect are experimental manipulations of cue validity in 
attention research where trials in which a cue validly indicates the 
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correlations between the random effects within each subject. It is 
easy to show that they have an effect on the structure of the covari-
ance matrix V

i
 of the response vector y

i
. Specifically,

y X V V Z Zi i i i i iN∼ β Ψ( ),, T with = + σ2I 	 (5)

Thus, random effects will induce a correlation structure between 
responses of a given subject. A pure random-intercept model with 
subjects as the random factor yields estimates of the between-sub-
ject variance ψ2 and of the within-subject (residual) variance σ2; 
the intraclass coefficient ψ2/(ψ2 + σ2) represents the correlation 
between values of two randomly drawn responses in the same, 
randomly drawn subject (Snijders and Bosker, 1999).

APPLiCaTiON TO ViSUaL-aTTENTiON EXPERiMENT
For the visual-attention experiment we estimate four fixed-ef-
fect parameters (p = 4; i.e., intercept and three effects from four 
experimental conditions). For each of these four parameters we 
assume reliable differences between the subjects (q = 4; M = 61; i.e., 
4 × 61 = 244 random effects). The random effects are parameter-
ized with ten variance/covariance components, that is, with four 
variances – between-subject variability of mean RT (i.e., random 
intercept) and between-subject variability of three effects (i.e., 
random slopes) – and with six correlations of the subject-specific 
differences in mean RT and three experimental effects. Thus, we 
estimate a total of 14 model parameters plus the variance of the 
residual error for the full LMM. Note that the number of param-
eters grows quadratically with the number of random effects if 
the full variance–covariance matrix Ψ is estimated. Frequently, 
one encounters practical limits, primarily related to the amount 
of information that can be extracted reliably from the data of a 
psychological experiment. Therefore, the correlation parameters are 
often forced to 0 or only a theoretically motivated subset of fixed 
effects  is parameterized in the variance–covariance matrix Ψ.

For tests of hypotheses relating to individual differences in 
experimental effects there are at least three procedures. In the first 
procedure, groups are defined post hoc on median splits on one 
of the effects or on mean RT; this group factor is included as a 
between-subject factor in the ANOVA. Then, predictions of cor-
relations map onto group × effect or effect × effect interactions. For 
example, a positive correlation between mean RT and spatial effect 
may correspond to a larger post hoc group difference on the SOD 
than the VALID cue condition. The problem with this procedure is 
that it does not use information about individual differences within 
each of the post hoc groups and typically the dependent variable 
(i.e., RT) is used to define an independent variable (i.e., it requires 
a post hoc specification of an experimental design factor).

In the second strategy, mean RTs and experimental effects are 
estimated separately for each subject, for example, with ordinary 
least-squares regression (i.e., a within-subject analysis of the 
experimental contrasts). Subsequent correlations between these 
regression coefficients represent the desired effect correlations. 
The problem with this procedure is that per-subject regressions 
accumulate a considerable degree of overfitting (Baayen, 2008). It 
is also well known, of course, that such within-subject difference 
scores are notoriously unreliable. With few exceptions, the low reli-
ability of difference scores derived from experimental conditions 

belonged to the different-object condition (DOS; “different object, 
same distance”). Finally, if the target was presented at the other end 
of the uncued rectangle, this trial was called diagonally different-
object condition, or for short, diagonal condition (DOD; “different 
object, diagonal location”). The four experimental conditions yield 
three contrasts (in addition to an estimate of the grand mean RT 
based on the four condition means):

Spatial effect SOD VALID= − 	 (1)

Object effect DOS VALID SOD VALID DOS SOD= − − − = −[ ] [ ] 	
(2)

Attraction effect DOS VALID DOD VALID

DOS DOD

= − − −
= −

[ ] [ ]

	 (3)

We specify these three contrasts as planned comparisons. In 
addition, we are interested in the correlation of these effects. As 
described above, on the admittedly speculative assumption that 
slow RTs translate into the equivalent of a long SOA, spatial effects 
should be associated with long mean RTs. Assuming individual 
differences in the degree to which attention gravitates back to the 
display centroid, we expect a negative correlation between the spa-
tial and the attraction effects.

MaThEMaTiCaL REPRESENTaTiON OF LMM
Linear mixed models extend the linear model with the inclusion 
of random effects, in our case due to differences between subjects. 
Following Pinheiro and Bates (2000), we use Laird and Ware’s 
(1982) formulation that expresses the n

i
-dimensional response 

vector y
i
 for the ith of M subjects as:

y X Z b bi I= + ψi i i i ii N  i N+ =, M , ,1 0 0, , ( ), ( , ) , with 2
  σ 	

(4)

where  is the p-dimensional vector of fixed effect parameters, b
i
 

is the q-dimensional vector of random effects assumed to be nor-
mally distributed with a mean of 0 and a variance–covariance 
matrix Ψ, and 

i
 is the n

i
-dimensional within-subject error vector 

also conforming to a normal distribution. The random effects b
i
 

and the within-subject errors 
i
 are assumed to be independent 

for different subjects and to be independent of each other for the 
same subject.

X
i
 with dimensions n

i
 × p is the familiar design matrix of the 

general linear model; X
i
 is the overall or fixed component of the 

model. Z
i
 with dimensions n

i
 × q is the design matrix for subject 

i; Z
i
b

i
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conditions, with 48 (10%) per condition. Half of the trials in each 
condition were with horizontally placed parallel rectangles and half 
with vertically presented rectangles.

PROCEDURE
Presentation of stimuli and recording of response times and error rates 
were controlled by Presentation software (http://nbs.neuro-bs.com/). 
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As a statistical test of the significance of variance/covari-
ance components, we started with a model containing only a 
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directly visible in the figure due to scale differences, prediction 
intervals of mean RTs are quite a bit narrower than those of the 
effects due to the fact that the latter are difference scores. Finally, 
the “implicit slopes” in Figure 2 for conditional modes across 
subjects reflect the positive correlation between spatial effect 
and mean RT.

Second, prediction intervals for the subjects’ object effects 
overlap very strongly, suggesting that there is not much reliable 
between-subject variance associated with this effect. Nevertheless, 
an LMM without variance/covariance components for the object 
effect fits marginally worse than the complete model, with a ∆χ2 
(4 df)  =  9.5, p  =  0.02, for the decrease in loglikelihood. The 
reported p-value is based on a parametric bootstrap (1000 sam-
ples) since the conventional ㈀

p
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effects. As shown in Figure 4, slow subjects showed larger spatial 
effects [F(1, 59) = 17.1, MSE = 264, p < 0.01]. The two other inter-
actions were not significant; both F-values < 1. Note that between-
subject variance in mean RT was removed for this plot; this, of 
course, also removes the main effect of speed group. Consequently, 
it becomes apparent that slow subjects are relatively faster on trials 
with valid than invalid cue-target relations. Thus, the results are 
in agreement with the expectation that the spatial effect is modu-
lated by individual differences in RT. Slow subjects engage attention 
more at the cued location than fast subjects. There is no significant 
evidence for such a modulation for object and attraction effects. 
The corresponding LMM correlation parameters were +0.60, −0.13, 
and −0.25 (see Table 2).

Attraction effect as post hoc grouping factor
We also predicted that subjects with an attraction effect will show 
a comparatively small spatial effect. For a post hoc ANOVA test 
of this hypothesis, we classified subjects according to whether or 
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cueing effect in our study was augmented by the simultaneous 
activation of an object – an issue that should be addressed in 
future studies.

Importantly and in support of the assumption that individual 
differences in RT may represent a quasi-experimental SOA manipu-
lation (Lamy and Egeth, 2002
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